Linear, Parameter Varying Model Reduction for Aeroservoelastic Systems
نویسندگان
چکیده
This paper applies a model reduction method for linear parameter-varying (LPV) systems based on parameter-varying balanced realization techniques to a body freedom flutter (BFF) vehicle. The BFF vehicle has a coupled short period and first bending mode with additional structural bending and torsion modes that couple with the rigid body dynamics. These models describe the BFF vehicle dynamics with considerable accuracy, but result in high-order state space models which make controller design extremely difficult. Hence, reduced order models for control synthesis are generated by retaining a common set of states across the flight envelope. Initially the full order BFF models of 148 states are reduced to 43 states using standard truncation and residualisation techniques. The application of balanced realization techniques at individual point designs result in 20 state models. Unfortunately, the application of balanced realization techniques at individual operating conditions results in different states being eliminated at each operating condition. The objective of LPV model reduction is to further reduce the model state order across the flight envelope while retaining consistent states in the LPV model. The resulting reduced order LPV models with 26 states capture the dynamics of interest and can be used in the synthesis of active flutter suppression controllers.
منابع مشابه
Model Reduction for Aeroservoelastic Systems
A model-reduction method for linear, parameter-varying systems based on parameter-varying balanced realizations is proposed for a body freedom flutter vehicle. A high-order linear, parameter-varying model with hundreds of states describes the coupling between the short period and first bendingmode with additional structural bending and torsion modes that couple with the rigid body dynamics. How...
متن کاملModal Matching for LPV Model Reduction of Aeroservoelastic Vehicles
A model order reduction method is proposed for models of aeroservoelastic vehicles in the linear parameter-varying (LPV) systems framework, based on state space interpolation of modal forms. The dynamic order of such models is usually too large for control synthesis and implementation since they combine rigid body dynamics, structural dynamics and unsteady aerodynamics. Thus, model order reduct...
متن کاملLPV Aeroservoelastic Control using the LPVTools Toolbox
LPVTools is a MATLAB toolbox that is being developed to perform gain-scheduled Linear Parameter-Varying (LPV) control of aeroservoelastic systems. This paper outlines the LPV modeling, analysis and controller synthesis features of this toolbox. The features of the toolbox are illustrated by an application example, where a grid-based LPV model is developed for the X-56A aircraft using LPVTools. ...
متن کاملAdmissibility analysis for discrete-time singular systems with time-varying delays by adopting the state-space Takagi-Sugeno fuzzy model
This paper is pertained with the problem of admissibility analysis of uncertain discrete-time nonlinear singular systems by adopting the state-space Takagi-Sugeno fuzzy model with time-delays and norm-bounded parameter uncertainties. Lyapunov Krasovskii functionals are constructed to obtain delay-dependent stability condition in terms of linear matrix inequalities, which is dependent on the low...
متن کاملRobust Fuzzy Gain-Scheduled Control of the 3-Phase IPMSM
This article presents a fuzzy robust Mixed - Sensitivity Gain - Scheduled H controller based on the Loop -Shaping methodology for a class of MIMO uncertain nonlinear Time - Varying systems. In order to design this controller, the nonlinear parameter - dependent plant is first modeled as a set of linear subsystems by Takagi and Sugeno’s (T - S) fuzzy approach. Both Loop - Shaping methodology and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012